DAY ONE

Sets, Relations and Functions

Learning & Revision for the Day

- Sets
- Venn Diagram
- Venn DiagramOperations on Sets
- Law of Algebra of SetsCartesian Product of Sets
- Relations
- Composition of Relations
- Functions or Mapping
- Composition of Functions

CLICK HERE

🕀 www.studentbro.in

Sets

- A set is a well-defined class or collection of the objects.
- Sets are usually denoted by the symbol *A*, *B*, *C*, ... and its elements are denoted by *a*, *b*, *c*, ... etc.
- If *a* is an element of a set *A*, then we write $a \in A$ and if not then we write $a \notin A$.

Representations of Sets

There are two methods of representing a set :

- In **roster method**, a set is described by listing elements, separated by commas, within curly braces {*≠*}. e.g. A set of vowels of English alphabet may be described as {*a*, *e*, *i*, *o*, *u*}.
- In **set-builder method**, a set is described by a property P(x), which is possessed by all its elements *x*. In such a case the set is written as $\{x : P(x) \text{ holds}\}$ or $\{x | P(x) \text{ holds}\}$, which is read as the set of all *x* such that P(x) holds. e.g. The set $P = \{0, 1, 4, 9, 16, ...\}$ can be written as $P = \{x^2 | x \in Z\}$.

Types of Sets

- The set which contains no element at all is called the **null set** (empty set or void set) and it is denoted by the symbol ' ϕ ' or '{}' and if it contains a single element, then it is called **singleton set**.
- A set in which the process of counting of elements definitely comes to an end, is called a **finite set**, otherwise it is an **infinite set**.
- Two sets *A* and *B* are said to be **equal set** iff every element of *A* is an element of *B* and also every element of *B* is an element of *A*. i.e. A = B, if $x \in A \Leftrightarrow x \in B$.

Get More Learning Materials Here :

- **Equivalent sets** have the same number of elements but not exactly the same elements.
- A set that contains all sets in a given context is called **universal set** (*U*).
- Let *A* and *B* be two sets. If every element of *A* is an element of *B*, then *A* is called a **subset** of *B*, i.e. $A \subseteq B$.
- If A is a subset of B and A ≠ B, then A is a proper subset of B. i.e. A ⊂ B.
- The null set ϕ is a subset of every set and every set is a subset of itself i.e. $\phi \subset A$ and $A \subseteq A$ for every set A. They are called **improper subsets** of A.
- If S is any set, then the set of all the subsets of S is called the **power set** of S and it is denoted by P(S). Power set of a given set is always non-empty. If A has n elements, then P(A) has 2^n elements.
- NOTE The set {φ} is not a null set. It is a set containing one element φ.
 - Whenever we have to show that two sets A and B are equal show that $A \subseteq B$ and $B \subseteq A$.
 - If a set A has m elements, then the number m is called cardinal number of set A and it is denoted by n(A). Thus, n(A) = m.

Venn Diagram

The combination of rectangles and circles is called **Venn Euler diagram** or Venn diagram. In Venn diagram, the universal set is represented by a rectangular region and a set is represented by circle on some closed geometrical figure. Where, A is the set and U is the universal set.

Operations on Sets

The union of sets *A* and *B* is the set of all elements which are in set *A* or in *B* or in both *A* and *B*.
i.e. *A* ∪ *B* = {*x* : *x* ∈ *A* or *x* ∈ *B*}

• The **intersection** of *A* and *B* is the set of all those elements that belong to both *A* and *B*.

i.e. $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

- If $A \cap B = \phi$, then *A* and *B* are called **disjoint sets**.
- Let U be an universal set and A be a set such that A ⊂ U. Then, complement of A with respect to U is denoted by A' or A^c or Ā or U – A. It is defined as the set of all those elements of U which are not in A.

• The **difference** *A* – *B* is the set of all those elements of *A* which does not belong to *B*.

i.e. $A-B = \{x : x \in A \text{ and } x \notin B\}$

and $B-A = \{x : x \in B \text{ and } x \notin A\}.$

• The symmetric difference of sets *A* and *B* is the set $(A - B) \cup (B - A)$ and is denoted by $A \Delta B$. i.e. $A \Delta B = (A - B) \cup (B - A)$

🕀 www.studentbro.in

Law of Algebra of Sets

If A, B and C are any three sets, then

1. Idempotent Laws

(i) $A \cup A = A$ (ii) $A \cap A = A$

2. Identity Laws

CLICK HERE

(i) $A \cup \phi = A$ (ii) $A \cap U = A$

- 3. Distributive Laws
 - (i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Get More Learning Materials Here : 📕

4. De-Morgan's Laws

(i) $(A \cup B)' = A' \cap B'$

(ii) $(A \cap B)' = A' \cup B'$

(iii) $A - (B \cap C) = (A - B) \cup (A - C)$

(iv) $A - (B \cup C) = (A - B) \cap (A - C)$

5. Associative Laws

(i) $(A \cup B) \cup C = A \cup (B \cup C)$

(ii) $A \cap (B \cap C) = (A \cap B) \cap C$

6. Commutative Laws

(i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$ (iii) $A \Delta B = B \Delta A$

Important Results on Operation of Sets

1. $A - B = A \cap B'$ 2. $B - A = B \cap A'$ 3. $A - B = A \Leftrightarrow A \cap B = \phi$ 4. $(A - B) \cup B = A \cup B$ 5. $(A - B) \cap B = \phi$ 6. $A \subseteq B \Leftrightarrow B' \subseteq A'$ 7. $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$ 8. $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 9. $n(A \cup B) = n(A) + n(B)$ \Leftrightarrow *A* and *B* are disjoint sets. 10. $n(A - B) = n(A) - n(A \cap B)$ 11. $n(A \Delta B) = n(A) + n(B) - 2n(A \cap B)$ 12. $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B)$ $-n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ 13. $n(A' \cup B') = n(A \cap B)' = n(U) - n(A \cap B)$ 14. $n(A' \cap B') = n(A \cup B)' = n(U) - n(A \cup B)$

Cartesian Product of Sets

Let *A* and *B* be any two non-empty sets. Then the cartesian product $A \times B$, is defined as set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$. i.e.

- $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$
- $B \times A = \{(b, a) : b \in B \text{ and } a \in A\}$ and $A \times A = \{(a, b) : a, b \in A\}.$
- $A \times B = \phi$, if either *A* or *B* is an empty set.
- If n(A) = p and n(B) = q, then $n(A \times B) = n(A) \cdot n(B) = pq$.
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $A \times (B C) = (A \times B) (A \times C)$
- $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$

Relations

- Let *A* and *B* be two non-empty sets, then **relation** *R* from *A* to *B* is a subset of $A \times B$, i.e. $R \subseteq A \times B$.
- If $(a, b) \in R$, then we say a is related to b by the relation R and we write it as aRb.
- Domain of $R = \{a: (a, b) \in R\}$ and range of $R = \{b: (a, b) \in R\}$.
- If n(A) = p and n(B) = q, then the total number of relations from A to B is 2^{pq}.

Types of Relations

- Let *A* be any non-empty set and *R* be a relation on *A*. Then,
 - (i) *R* is said to be **reflexive** iff $(a, a) \in R, \forall a \in A$.
- (ii) *R* is said to be **symmetric** iff

$$(a,b) \in R$$

$$(b, a) \in R, \forall a, b \in A$$

(iii) *R* is said to be a **transitive** iff
$$(a, b) \in R$$
 and $(b, c) \in R$
 \Rightarrow $(a, c) \in R, \forall a, b, c \in A$

i.e.
$$aRb$$
 and $bRc \implies aRc, \forall a, b, c \in A$.

- The relation $I_A = \{(a, a) : a \in A\}$ on A is called the **identity relation** on A.
- *R* is said to be an **equivalence relation** iff
 - (i) it is reflexive i.e. $(a, a) \in R, \forall a \in A$.
- (ii) it is symmetric i.e. $(a,b) \in R \implies (b,a) \in R, \forall a,b \in A$
- (iii) it is transitive

⇒

i.e. $(a,b) \in R$ and $(b,c) \in R$

 $\Rightarrow \qquad (a,c) \in R, \forall \ a,b,c \in A$

Inverse Relation

Let *R* be a relation from set *A* to set *B*, then the **inverse of** *R*, denoted by R^{-1} , is defined by

 $R^{-1} = \{(b, a) : (a, b) \in R\}. \text{ Clearly, } (a, b) \in R \Leftrightarrow (b, a) \in R^{-1}.$

- NOTE The intersection of two equivalence relations on a set is an equivalence relation on the set.
 - The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
 - If *R* is an equivalence relation on a set *A*, then R^{-1} is also an equivalence relation *A*.

Composition of Relations

Let *R* and *S* be two relations from set *A* to *B* and *B* to *C* respectively, then we can define a relation *SoR* from *A* to *C* such that $(a, c) \in SoR \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. This relation is called the **composition of** *R* **and** *S*.

 $RoS \neq SoR$

Get More Learning Materials Here :

CL

Functions or Mapping

- If *A* and *B* are two non-empty sets, then a rule *f* which associates each $x \in A$, to a unique member $y \in B$, is called a function from *A* to *B* and it is denoted by $f : A \rightarrow B$.
- The set *A* is called the **domain** of $f(D_f)$ and set *B* is called the **codomain** of $f(C_f)$.
- The set consisting of all the *f*-images of the elements of the domain *A*, called the range of $f(R_f)$.
- NOTE A relation will be a function, if no two distinct ordered pairs have the same first element.
 - Every function is a relation but every relation is not necessarily a function.
 - The number of functions from a finite set A into finite set B is $\{n(B)\}^{n(A)}$.

Different Types of Functions

Let *f* be a function from *A* to *B*, i.e. $f : A \rightarrow B$. Then,

f is said to be **one-one function** or injective function, if different elements of A have different images in B.

Methods to Check One-One Function

Method I If $f(x) = f(y) \Rightarrow x = y$, then *f* is one-one.

Method II A function is one-one iff no line parallel to X-axis meets the graph of function at more than one point.

• The number of one-one function that can be defined from a

finite set *A* into finite set *B* is $\begin{cases} n(B) P_{n(A)}, \text{ if } n(B) \ge n(A) \\ 0, \text{ otherwise} \end{cases}$

• *f* is said to be a **many-one function**, if two or more elements of set *A* have the same image in *B*.

i.e. $f:A \rightarrow B$ is a many-one function, if it is not a one-one function.

• *f* is said to be **onto function** or **surjective function**, if each element of *B* has its pre-image in *A*.

Method to Check Onto Function

Find the range of f(x) and show that range of

f(x) =codomain of f(x).

- Any polynomial function of odd degree is always onto.
- The number of onto functions that can be defined from a finite set *A* containing *n* elements onto a finite set *B* containing 2 elements $= 2^n 2$.
- If $n(A) \ge n(B)$, then number of onto function is 0.
- If *A* has *m* elements and *B* has *n* elements, where m < n, then number of onto functions from *A* to *B* is $n^m {}^nC_1 (n-1)^m + {}^nC_2 (n-2)^m \dots, m < n$.
- f is said to be an **into function**, if there exists atleast one element in *B* having no pre-image in *A*. i.e. $f : A \rightarrow B$ is an into function, if it is not an onto function.

- *f* is said to be a **bijective function**, if it is one-one as well as onto.
- NOTE If $f: A \rightarrow B$ is a bijective, then A and B have the same number of elements.
 - If n(A) = n(B) = m, then number of bijective map from A to B is m!.

Composition of Functions

Let $f: A \to B$ and $g: B \to C$ are two functions. Then, the composition of f and g, denoted by

 $gof: A \rightarrow C$, is defined as,

 $gof(x) = g[f(x)], \forall x \in A.$

NOTE • *gof* is defined only if f(x) is an element of domain of *g*.

• Generally, $gof \neq fog$.

DAY PRACTICE SESSION 1

FOUNDATION QUESTIONS EXERCISE

- **1** If $Q = \left\{ x : x = \frac{1}{y}, \text{ where } y \in N \right\}$, then (d) $\frac{2}{3} \in Q$ (c) 2∈ Q (a) 0 ∈ Q (b) 1∈ Q **2** If P(A) denotes the power set of A and A is the void set,
- then what is number of elements in $P\{P\{P(A)\}\}$? (a) 0 (b) 1 (c) 4 (d) 16
- **3** If $X = \{4^n 3n 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$; where N is the set of natural numbers, then $X \cup Y$ is equal to

→ JEE Mains 2014

(a) N (b) *Y-X* (c) X (d) Y **4** If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then

(b) B = C(a) A = C(c) $A \cap B = \phi$ (d) A = B

5 Suppose A_1, A_2, \dots, A_{30} are thirty sets each having 5 elements and B_1, B_2, \dots, B_n are *n* sets each having 3 elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{i=1}^{n} B_i = S$ and each element of S

belongs to exactly 10 of A_i 's and exactly 9 of B_i 's. The → NCERT Exemplar value of *n* is equal to (0) 15(1) 0

(a) 15	(C) 3
(c) 45	(d) None of these

- **6** If A and B are two sets and $A \cup B \cup C = U$. Then, $\{(A-B)\cup(B-C)\cup(C-A)\}'$ is equal to (a) $A \cup B \cup C$ (b) $A \cup (B \cap C)$ (c) $A \cap B \cap C$ (d) $A \cap (B \cup C)$
- 7 Let X be the universal set for sets A and B, if n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$, then $n(A' \cap B')$ is equal to 300 provided n(X) is equal to (a) 600 (b) 700 (c) 800 (d) 900
- **8** If n(A) = 1000, n(B) = 500, $n(A \cap B) \ge 1$ and $n(A \cup B) = P$, then

(a) 500≤ <i>P</i> ≤1000	(b) 1001≤ <i>P</i> ≤1498
(c) 1000≤ <i>P</i> ≤1498	(d) 1000 ≤ <i>P</i> ≤ 1499

- **9** If n(A) = 4, n(B) = 3, $n(A \times B \times C) = 24$, then n(C) is equal to (a) 2 (b) 288 (c) 12 (d) 1
- **10** If $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12),$ (3, 6)} is a relation on the set $A = \{3, 6, 9, 12\}$. The relation is
 - (a) an equivalence relation
 - (b) reflexive and symmetric
 - (c) reflexive and transitive
 - (d) only reflexive
- **11** Let $R = \{(x, y) : x, y \in N \text{ and } x^2 4xy + 3y^2 = 0\}$, where N is the set of all natural numbers. Then, the relation R is → JEE Mains 2013

- (a) reflexive but neither symmetric nor transitive
- (b) symmetric and transitive
- (c) reflexive and symmetric

(d) reflexive and transitive

- **12** If $g(x) = 1 + \sqrt{x}$ and $f\{g(x)\} = 3 + 2\sqrt{x} + x$, then f(x) is equal to
 - (b) $2 + x^2$ (d) 2 + x(a) $1 + 2x^2$ (c) 1+ x

13 Let f(x) = ax + b and g(x) = cx + d, $a \neq 0$, $c \neq 0$. Assume a = 1, b = 2, if (fog)(x) = (gof)(x) for all x. What can yousay about c and d?

- (a) *c* and *d* both arbitrary (b) c = 1 and d is arbitrary
- (c) c is arbitrary and d = 1 (d) c = 1, d = 1**14** If *R* is relation from {11, 12, 13} to {8, 10, 12} defined by
 - y = x 3. Then, R^{-1} is (a) {(8, 11), (10, 13)} (b) {(11, 18), (13, 10)}
 - (c) {(10, 13), (8, 11)} (d) None of these
- **15** Let *R* be a relation defined by $R = \{(4, 5), (1, 4), (4, 6), ($ (7, 6), (3, 7), then $R^{-1} OR$ is
 - (a) {(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)} (b) {(1, 1), (4, 4), (7, 7), (3, 3)} (c) {(1, 5), (1, 6), (3, 6)} (d) None of the above
- **16** Let *A* be a non-empty set of real numbers and $f : A \rightarrow A$ be such that f(f(x)) = x, $\forall x \in R$. Then, f(x) is (a) a bijection (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

17 The function *f* satisfies the functional equation

 $\frac{x+59}{x-1}$ 3f(x) + 2f= 10x + 30 for all real $x \neq 1$. The value of f(7) is (a) 8

- (b) 4 (c) – 8 (d) 11
- **18** The number of onto mapping from the set $A = \{1, 2, \dots, 100\}$ to set $B = \{1, 2\}$ is 100 (d) 2⁹⁹

(a)
$$2^{100} - 2$$
 (b) 2^{100} (c) $2^{99} - 2$

- **19** Let $f: R \{n\} \rightarrow R$ be a function defined by $f(x) = \frac{x m}{x m}$ where $m \neq n$. Then, (a) f is one-one onto (b) f is one-one into (c) f is many-one onto (d) f is many-one into
- **20** A function *f* from the set of natural numbers to integers

defined by $f(n) = \begin{cases} \frac{n-1}{2}, \text{ when } n \text{ is odd} \\ \frac{n}{2}, \text{ when } n \text{ is even} \end{cases}$ when *n* is even

- (a) one-one but not onto (b) onto but not one-one (c) both one-one and onto (d) neither one-one nor onto

Get More Learning Materials Here :

CLICK HERE

21 Let $f : N \to N$ defined by $f(x) = x^2 + x + 1$, $x \in N$, then f is

(a) one-one onto (b) many-one onto (c) one-one but not onto (d) None of these

22 Let *R* be the real line. Consider the following subsets of the plane $R \times R$.

$$S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$$

and $T = \{(x, y): x - y \text{ is an integer}\}$

Which one of the following is true?

- (a) T is an equivalence relation on R but S is not
- (b) Neither S nor T is an equivalence relation on R
- (c) Both S and T are equivalence relations on R
- (d) S is an equivalence relation on R but T is not
- **23** Consider the following relations
 - $R = \{(x, y) \mid x \text{ and } y \text{ are real numbers and } x = wy \text{ for some rational number } w\};$
 - $S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) \middle| m, n, p \text{ and } q \text{ are integers such that } n, q \neq 0 \right\}$

and qm = pn}. Then,

- (a) *R* is an equivalence relation but *S* is not an equivalence relation
- (b) neither R nor S is an equivalence relation

(c) *S* is an equivalence relation but *R* is not an equivalence relation

(d) R and S both are equivalence relations

24 If
$$f(x) = \begin{cases} 2+x, & x \ge 0 \\ 4-x, & x < 0 \end{cases}$$
 then $f(f(x))$ is given by
(a) $f(f(x)) = \begin{cases} 4+x, & x \ge 0 \\ 6-x, & x < 0 \end{cases}$ (b) $f(f(x)) = \begin{cases} 4+x, & x \ge 0 \\ x, & x < 0 \end{cases}$
(c) $f(f(x)) = \begin{cases} 4-x, & x \ge 0 \\ x, & x < 0 \end{cases}$ (d) $f(f(x)) = \begin{cases} 4-2x, & x \ge 0 \\ 4+2x, & x < 0 \end{cases}$

25 Statement I A relation is defined by

 $f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 2x, & 3 \le x \le 9 \end{cases}$ is a function.

Statement II In a function, every member must have a unique image.

- (a) Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I
- (b) Statement I is true, Statement II is true; Statement II is not a correct explanation for Statement I
- (c) Statement I is true; Statement II is false
- (d) Statement I is false; Statement II is true

(DAY PRACTICE SESSION 2)

PROGRESSIVE QUESTIONS EXERCISE

→ JEE Mains 2016

1 If
$$f(x) + 2f\left(\frac{1}{x}\right) = 3x, x \neq 0$$
 and $S = \{x \in R : f(x) = f(-x)\};$

then ${\cal S}$

- (a) is an empty set
- (b) contains exactly one element
- (c) contains exactly two elements
- (d) contains more than two elements

$$2 \left\{ x \in R : \frac{2x - 1}{x^3 + 4x^2 + 3x} \in R \right\} \text{ is equal to}$$
(a) $R - \{0\}$ (b) $R - \{0, 1, 3\}$
(c) $R - \{0, -1, -3\}$ (d) $R - \left\{0, -1, -3, \frac{1}{2}\right\}$

3 Given the relation $R = \{(1, 2) (2, 3)\}$ on the set $A = \{1, 2, 3\}$, the minimum number of ordered pairs which when added to *R* make it an equivalence relation is

(a) 5 (b) 7 (c) 6 (d) 8

4 The set $(A \cup B \cup C) \cap (A \cap B' \cap C') \cap C'$ is equal to \rightarrow NCERT Exemplar

(a) $B \cap C'$	(b) $A \cap C$
(c) <i>B'</i> ∩ <i>C'</i>	(d) None of these

5 Let $A = \{1, 2, 3, 4\}, B = \{2, 4, 6\}$. Then the number of sets *C* such that $A \cap B \subseteq C \subseteq A \cup B$ is (a) 6 (b) 9 (c) 8 (d) 10

- 6 On the set N of all natural numbers define the relation R by aRb iff the g.c.d. of a and b is 2, then R is
 (a) reflexive but not symmetric (b) symmetric only
 (c) reflexive and transitive (d) equivalence relation
- **7** Suppose *f* is a function satisfying f(x + f(x)) = 4f(x) and f(1) = 4. The value of f(21) is

(b) $x^2 - 1$ (d) $x^2 + 1$

(a) 16 (b) 64 (c) 4 (d) 44
8 Let
$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq 0$$
, then $f(x)$ is equal to

(a)
$$x^2$$

(c) $x^2 - 2$

9 Let
$$f(x) = \frac{x}{\sqrt{1 + x^2}}$$
, the for $for (x)$ is x times

(a)
$$\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} r\right)x^2}}$$
 (b) $\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} 1\right)x^2}}$
(c) $\left(\frac{x}{\sqrt{1 + x^2}}\right)^x$ (d) $\frac{nx}{\sqrt{1 + nx^2}}$

10 If two sets *A* and *B* are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are

🕀 www.studentbro.in

(a) 2^{99} (b) 99^2 (c) 100 (d) 18

Get More Learning Materials Here : 📕

CLICK HERE

ANSWERS

(SESSION 1)	 (b) (a) (c) 	 2. (d) 12. (b) 22. (a) 	3. (d) 13. (b) 23. (c)	4. (b) 14. (a) 24. (a)	5. (c) 15. (a) 25. (d)	6. (c) 16. (a)	7. (b) 17. (b)	8. (d) 18. (a)	9. (a) 19. (b)	10. (c) 20. (c)
(SESSION 2)	1. (c)	2. (c)	3. (b)	4. (a)	5. (c)	6. (b)	7. (b)	8. (c)	9. (b)	10. (b)

Hints and Explanations

SESSION 1

1 Clearly, $\frac{1}{V} \neq 0$, 2 and $\frac{2}{3}$ $[\because y \in N]$ $\therefore \frac{1}{v}$ can be 1. $\Rightarrow x = 1 \in Q$ **2** The number of elements in power set of *A* is 1. $P\{P(A)\} = 2^1 = 2$ ÷ $P\{P\{P(A)\}\} = 2^2 = 4$ \Rightarrow $P \{P \{P \{P(A)\}\}\} = 2^4 = 16$ \Rightarrow 3 We have, $X = \{4^n - 3n - 1 : n \in N\}$ $X = \{0, 9, 54, 243, \ldots\}$ [put n = 1, 2, 3, ...] $Y=\{9(n-1):n\in N\}$ $Y = \{0, 9, 18, 27, \dots\}$ [put n = 1, 2, 3, ...]It is clear that $X \subset Y$. *.*.. $X \cup Y = Y$ **4** Clearly, $A \cap B = A \cap C$ and $A \cup B = A \cup C$ possible if B = C**5** Number of elements in $A_1 \cup A_2 \cup A_3 \cup \ldots \cup A_{30}$ is 30×5 but each element is used 10 times, so $n(S) = \frac{30 \times 5}{10} = 15$...(i) Similarly, number of elements in $B_1 \cup B_2 \dots \cup B_n$ is 3 *n* but each element is repeated 9 times, so $n(S) = \frac{3n}{2}$ $15 = \frac{3n}{2}$ [from Eq. (i)] \Rightarrow n = 45

6 From Venn Euler's diagram,

It is clear that, $\{(A - B) \cup (B - C) \cup (C - A)\}'$ $= A \cap B \cap C$

7 :: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$:. $n(A \cup B) = 200 + 300 - 100 = 400$:. $n(A' \cap B') = n(A \cup B)' = n(X)$ $- n(A \cup B)$ ⇒ 300 = n(X) - 400

 \Rightarrow n(X) = 700

8 We know, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ ∴ $P = 1500 - n(A \cap B)$ ⇒ $n(A \cap B) = 1500 - P$ Clearly, $1 \le n(A \cap B) \le 500$ [: maximum number of elements common in A and B = 500] ⇒ $1 \le 1500 - P \le 500$ ⇒ $-1499 \le -P \le -1000$ ⇒ $1000 \le P \le 1499$

9 We know, $n (A \times B \times C) = n (A) \times n(B) \times n(C)$ $\therefore \qquad n(C) = \frac{24}{4 \times 3} = 2$

10 Since for each a ∈ A, (a, a)∈ R. R is reflexive relation.
Now, (6, 12) ∈ R but (12, 6) ∉ R. So, it is not a symmetric relation.
Also, (3, 6), (6, 12) ∈ R ⇒ (3, 12) ∈ R ⇒ R is transitive.

11 :: $a^2 - 4a \cdot a + 3a^2 = 4a^2 - 4a^2 = 0$ ∴ $(a, a) \in R, \forall a \in N \Rightarrow R$ is reflexive. Now, as $a^2 - 4ab + 3b^2 = 0$ but $b^2 - 4ba + 3a^2 \neq 0$ ∴ R is not symmetric. Also $(a, b) \in R$ and $(b, c) \in R$

Also, $(a, b) \in R$ and $(b, c) \in R$ $\Rightarrow (a, c) \in N$ So, R is not transitive.

- **12** Given, $g(x) = 1 + \sqrt{x}$ and $f\{g(x)\} = 3 + 2\sqrt{x} + x$...(i) $\Rightarrow f(1 + \sqrt{x}) = 3 + 2\sqrt{x} + x$ Put $1 + \sqrt{x} = y \Rightarrow x = (y - 1)^2$ $\therefore \quad f(y) = 3 + 2(y - 1) + (y - 1)^2$ $= 2 + y^2$ $\therefore \quad f(x) = 2 + x^2$
- **13** Here, $(fog)(x) = f \{g(x)\} = a(cx + d) + b$ and $(gof)(x) = g \{f(x)\} = c(ax + b) + d$ Since, cx + d + 2 = cx + 2c + d[:: a = 1, b = 2]

Hence, c = 1 and d is arbitrary.

- **14** *R* is a relation from {11, 12, 13} to {8, 10, 12} defined by $y = x - 3 \Rightarrow x - y = 3$ ∴ $R = \{(11, 8), (13, 10)\}$ Hence, $R^{-1} = \{(8, 11), (10, 13)\}$
- **15** Clearly, $R^{-1} = \{(5, 4), (4, 1), (6, 4), (6, 7), (7, 3)\}$ Now, as $(4, 5) \in R$ and $(5, 4) \in R^{-1}$, therefore $(4, 4) \in R^{-1}OR$ Similarly, $(1, 4) \in R$ and $(4, 1) \in R^{-1}$ $\Rightarrow (1, 1) \in R^{-1}OR$ $(4, 6) \in R$ and $(6, 7) \in R^{-1}$
 - $\Rightarrow (4, 7) \in R^{-1}OR$ (7, 6) $\in R$ and (6, 7) $\in R^{-1}$ $\Rightarrow (7, 7) \in R^{-1}OR$
 - ⇒ $(7, 7) \in R$ OR $(7, 6) \in R$ and $(6, 4) \in R^{-1}$

🕀 www.studentbro.in

Get More Learning Materials Here :

 \Rightarrow (7, 4) $\in R^{-1}OR$ and $(3, 7) \in R$ and $(7, 3) \in R^{-1}$ \Rightarrow (3, 3) $\in R^{-1}OR$ Hence, $R^{-1}OR = \{(1, 1), (4, 4), (4, 7), \}$ (7, 7), (7, 4), (3, 3)**16** Let $x, y \in A$ such that f(x) = f(y), then f(f(x)) = f(f(y))x = y \Rightarrow $\Rightarrow f$ is one-one. Also, for any $a \in A$, we have f(f(a)) = a $\Rightarrow f(b) = a$, where $b = f(a) \in A$ Thus, for each $a \in A$ (codomain) there exists $b = f(a) \in A$ such that f(b) = a \therefore f is onto. Hence f is a bijective function. **17** We have, $3f(x) + 2f\left(\frac{x+59}{x-1}\right)$ = 10x + 30... (i) On replacing x by $\frac{x+59}{x-1}$, we get $3f\left(\frac{x+59}{x-1}\right) + 2f(x) = \frac{40x+560}{4} \quad \dots (ii)$

$$x - 1$$
On solving Eqs. (i) and (ii), we get
$$f(x) = \frac{6x^2 - 4x - 242}{x - 1}$$

$$\therefore \quad f(7) = \frac{6 \times 49 - 4 \times 7 - 242}{6} = 4$$

18 We know that if n(A) = n and n(B) = 2, the number of onto relations from *A* to $B = 2^n - 2$

 $\therefore \text{ Required number of relations} = 2^{100} - 2$

19 Suppose for any $x, y \in R$,

$$\Rightarrow \qquad \frac{f(x) = f(y)}{x - m} = \frac{y - m}{y - n}$$

$$\Rightarrow \qquad x = y$$

So, f is one-one.
Let $\alpha \in R$ be such that $f(x) = \alpha$
 $\therefore \qquad \frac{x - m}{x - n} = \alpha \Rightarrow x = \frac{m - n\alpha}{1 - \alpha}$
Clearly, $x \notin R$ for $\alpha = 1$
So, f is not onto.

20 Let $x, y \in N$ and both be even.

Then, $f(x) = f(y) \Rightarrow -\frac{x}{2} = -\frac{y}{2}$ $\Rightarrow \quad x = y$ Again, $x, y \in N$ and both are odd. Then, $f(x) = f(y) \Rightarrow x = y$ So, f is one-one Since, each negative integer is an image of even natural number and positive integer is an image of odd natural number. So, f is onto.

21 Let
$$x, y \in N$$
 such that $f(x) = f(y)$
 $\Rightarrow x^2 + x + 1 = y^2 + y + 1$
 $\Rightarrow (x^2 - y^2) = y - x$
 $\Rightarrow (x - y)(x + y + 1) = 0$
 $\Rightarrow x = y \text{ or } x = -y - 1 \notin N$
 $\Rightarrow x = y$
 $\Rightarrow f \text{ is one-one.}$
But $f \text{ is not onto, as } 1 \in N \text{ does not haveany pre-image.}$
 $\therefore f \text{ is one-one but not onto.}$
22 Since, $(1, 2) \in S$ but $(2, 1) \notin S$
Thus S is not symmetric.
Hence, S is not an equivalence relation
Given, $T = \{(x, y) : (x - y) \in I\}$
Now, $x - x = 0 \in I$, it is reflexive
relation.
Again, now $(x - y) \in I$
 $\Rightarrow y - x \in I$, it is symmetric relation.
Let $x - y = I_1$
and $y - z = I_2$
Then, $x - z = (x - y) + (y - z)$
 $= I_1 + I_2 \in I$
So, T is also transitive. Hence, T is an equivalence relation.
23 Since, the relation R is defined as
 $R = \{(x, y) \mid x, y \text{ are real numbers and}$

x = wy for some rational number w}. (a) **Reflexive** xRx as x = 1xHere, $w = 1 \in \text{Rational number}$ So, the relation R is reflexive. (b) **Symmetric** $xRy \Rightarrow yRx$ as 0R1 but $1 \mathbb{R} 0$ So, the relation R is not symmetric. Thus, R is not equivalence relation. Now, for the relation S, defined as, $S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) | m, n, p \text{ and } q \in \text{ integers} \right\}$ such that $n, q \neq 0$ and qm = pn} (a) **Reflexive** $\frac{m}{n}S\frac{m}{n} \Rightarrow mn = mn$ [true] Hence, the relation S is reflexive. (b) **Symmetric** $\frac{m}{n}S\frac{p}{q} \Rightarrow mq = np$ $\Rightarrow np = mq \Rightarrow \frac{p}{q}S\frac{m}{n}$

Hence, the relation *S* is
symmetric.
c) **Transitive**
$$\frac{m}{n}S\frac{p}{q}$$
 and $\frac{p}{q}S$

(

$$\Rightarrow$$
 $mq = np$ and $ps = rq$

 $\Rightarrow mq \cdot ps = np \cdot rq \Rightarrow ms = nr$ $\Rightarrow \frac{m}{n} = \frac{r}{s}$ $\Rightarrow \frac{m}{n}S\frac{r}{s}$ So, the relation *S* is transitive. Hence, the relation *S* is equivalence relation. **24** Clearly, $f(f(x)) = \begin{cases} 2 + f(x), \quad f(x) \ge 0\\ 4 - f(x), \quad f(x) < 0\\ 4 - f(x), \quad f(x) < 0\\ 2 + (4 - x), \quad x < 0\\ 2 + (4 - x), \quad x < 0 \end{cases}$ $= \begin{cases} 4 + x, \quad x \ge 0\\ 6 - x, \quad x < 0 \end{cases}$

 $= \begin{cases} 4 + x, & x \ge 0\\ 6 - x, & x < 0 \end{cases}$ **25** Statement I $f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 2x, & 3 \le x \le 9 \end{cases}$ Now, f(3) = 9Also, $f(3) = 2 \times 3 = 6$ Here, we see that for one value of x, there are two different values of f(x).

Hence, it is not a function but Statement II is true.

SESSION 2

1 We have, $f(x) + 2f\left(\frac{1}{x}\right) = 3x$, $x \neq 0 \dots (i)$ $\therefore \qquad f\left(\frac{1}{x}\right) + 2f(x) = \frac{3}{x} \qquad \dots (ii)$ $\left[\text{replacing } x \text{ by } \frac{1}{x}\right]$

On multiplying Eq. (ii) by 2 and then subtracting it from Eq. (i), we get $-3f(x) = 3x - \frac{6}{x}$ $\Rightarrow \qquad f(x) = \frac{2}{x} - x$

Now, consider f(x) = f(-x) $\Rightarrow \frac{2}{x} - x = -\frac{2}{x} + x \Rightarrow \frac{4}{x} = 2x$

 $\Rightarrow \qquad x^2 = 2 \Rightarrow x = \pm \sqrt{2}$

Thus, *x* contains exactly two elements.

2 Clearly,
$$\frac{2X-1}{x^3 + 4x^2 + 3x} \in R$$
 only when
 $x^3 + 4x^2 + 3x \neq 0$
Consider $x^3 + 4x^2 + 3x = 0$
 $\Rightarrow \quad x(x^2 + 4x + 3) = 0$
 $\Rightarrow \quad x(x + 1)(x + 3) = 0$
 $\Rightarrow \quad x = 0, -1, -3$
 $\therefore \quad \left\{ x \in R : \frac{2x - 1}{x^3 + 4x^2 + 3x} \in R \right\}$
 $= R - \{0, -1, -3\}$

Get More Learning Materials Here :

CLICK HERE

r

S

🕀 www.studentbro.in

- **3.** For *R* to be an equivalence relation, *R* must be reflexive, symmetric and transitive. *R* will be reflexive if it contains (1, 1), (2, 2) and (3, 3) R will be symmetric if it contains (2, 1) and (3, 2) R will be transitive if it contains (1, 3)and (3, 1) Hence, minimum number of ordered pairs = 7
- **4** $(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C'$ $= (A \cup B \cup C) \cap (A' \cup B \cup C) \cap C'$ $= (\phi \cup B \cup C) \cap C'$ $= (B \cup C) \cap C'$ $= (B \cap C') \cup \phi = B \cap C'$
- **5** Here, $A \cap B = \{2, 4\}$ and $A \cup B = \{1, 2, 3, 4, 6\}$ $\because A \cap B \subseteq C \subseteq A \cup B$ \therefore C can be {2, 4}, {1, 2, 4}, {3, 2, 4}, $\{6, 2, 4\}, \{1, 6, 2, 4\}, \{6, 3, 2, 4\},\$ $\{1, 3, 2, 4\}, \{1, 2, 3, 4, 6\}$ Thus, number of set C which satisfy the given condition is 8.
- **6** Clearly, g.c.d $(a, a) = a, \forall a \in N$

 \therefore R is not reflexive. If g.c.d (a, b) = 2, then g.c.d (b, a) is also 2.

Thus, $aRb \Rightarrow bRa$ Hence, R is symmetric. According to given option, R is symmetric only. 7 We have, f(x + f(x)) = 4 f(x) and f(1) = 4

On putting x = 1, we get f(1 + f(1)) = 4f(1)f(1 + f(1)) = 16 \Rightarrow f(1+4) = 16 \Rightarrow \Rightarrow f(5) = 16On putting, x = 5, we get f(5 + f(5)) = 4f(5) $f(5+16) = 4 \times 16$ \Rightarrow \Rightarrow f(21) = 64

8 We have

 \Rightarrow

$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$$
$$= \left(x + \frac{1}{x}\right)^2 - 2$$

 $f(x) = x^2 - 2$

9 We have,
$$f(x) = \frac{x}{\sqrt{1 + x^2}}$$

 $\Rightarrow f(f(x)) = \frac{f(x)}{\sqrt{1 + (f(x))^2}}$

$$= \frac{\frac{x}{\sqrt{1+x^2}}}{\sqrt{1+\frac{x^2}{1+x^2}}}$$
$$= \frac{x}{\sqrt{1+2x^2}}$$
Similarly, $f(f(f(x))) = \frac{x}{\sqrt{1+3x^2}}$
$$\vdots$$
$$\vdots$$
$$\frac{fofo \dots of of(x)}{n \text{ times}} = \frac{x}{\sqrt{1+nx^2}}$$
$$= \frac{x}{\sqrt{1+(\sum_{r=1}^{n} 1)x^2}}$$

10 We know, $(A \times B) \cap (C \times D) = (A \cap C)$ $\times (B \cap D)$ $\therefore (A \times B) \cap (B \times A) = (A \cap B)$ $\times (B \cap A)$ Thus, number of elements common to $A \times B$ and $B \times A$ $= n \left((A \times B) \cap (B \times A) \right)$ $= n \left((A \cap B) \times (B \cap A) \right)$ $= n(A \cap B) \times n (B \cap A)$ $= 99 \times 99 = 99^{2}$

