
Sets
l A set is a well-defined class or collection of the objects.

l Sets are usually denoted by the symbol A B C, , , ... and its elements are denoted by a b c, , ,
… etc.

l If a is an element of a set A, then we write a A∈ and if not then we write a A∉ .

Representations of Sets
There are two methods of representing a set :

l In roster method, a set is described by listing elements, separated by commas, within
curly braces{≠}. e.g. A set of vowels of English alphabet may be described as { , , , , }a e i o u .

l In set-builder method, a set is described by a property P x( ), which is possessed by all its

elements x. In such a case the set is written as { : ( )x P x holds} or { | ( )x P x holds}, which

is read as the set of all x such that P x( ) holds. e.g. The set P = { , , , , ,...}0 1 4 9 16 can be

written as P x x Z= ∈{ | }2 .

Types of Sets
l The set which contains no element at all is called the null set (empty set or void

set) and it is denoted by the symbol ‘φ ’ or ‘{}’ and if it contains a single element, then it is
called singleton set.

l A set in which the process of counting of elements definitely comes to an end, is called a
finite set, otherwise it is an infinite set.

l Two sets A Band are said to be equal set iff every element of A is an element of B and

also every element of B is an element of A. i.e. A B= , if x A x B∈ ⇔ ∈ .
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l Equivalent sets have the same number of elements but not
exactly the same elements.

l A set that contains all sets in a given context is called
universal set ( )U .

l Let A Band be two sets. If every element of A is an element
of B, then A is called a subset of B, i.e. A B⊆ .

l If A is a subset of B and A B≠ , then A is a proper subset of

B. i.e. A B⊂ .

l The null set φ is a subset of every set and every set is a
subset of itself i.e. φ ⊂ ⊆A A Aand for every set A. They
are called improper subsets of A.

l If S is any set, then the set of all the subsets of S is called
the power set of S and it is denoted by P S( ). Power set of a

given set is always non-empty. If A has n elements, then
P A( ) has 2n elements.

• The set { }φ is not a null set. It is a set containing one
element φ.

• Whenever we have to show that two sets A and B are equal
show that A B⊆ and B A⊆ .

• If a set A has m elements, then the number m is called
cardinal number of set A and it is denoted by n A( ). Thus,
n A m( ) = .

Venn Diagram
The combination of rectangles and circles is called Venn Euler
diagram or Venn diagram. In Venn diagram, the universal set
is represented by a rectangular region and a set is represented
by circle on some closed geometrical figure. Where, A is the
set and U is the universal set.

Operations on Sets
l The union of sets A Band is the set of all elements which

are in set A or in B or in both A and B.
i.e. A B x x A∪ = ∈{ : or x B∈ }

l The intersection of A Band is the set of all those elements

that belong to both A Band .

i.e. A B x x A x B∩ = ∈ ∈{ : and }.

l If A B∩ = φ, then A and B are called disjoint sets.
l Let U be an universal set and A be a set such that A U⊂ .

Then, complement of A with respect to U is denoted  by A′
or Ac or A or U A− . It is defined as the set of all those
elements  of U which are not in A.

l The difference A B− is the set of all those elements of A
which does not belong to B.
i.e. A B x x A x B− = ∈ ∉{ : and }
and B A x x B x A− = ∈ ∉{ : and }.

l The symmetric difference of sets A Band is the set
( ) ( )A B B A− ∪ − and is denoted by A B∆ .

i.e. A B A B B A∆ = − ∪ −( ) ( )

Law of Algebra of Sets
If A B C, and are any three sets, then

1. Idempotent Laws
(i) A A A∪ = (ii) A A A∩ =

2. Identity Laws
(i) A A∪ =φ (ii) A U A∩ =

3. Distributive Laws
(i) A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( )

(ii) A B C A B A C∩ ∪ = ∩ ∪ ∩( ) ( ) ( )

A B U

A B∩

UA′

A

A B

U

A – B

A B

U

B – A

A B U

A B∪

NOTE

A B U

A B∆

U

A
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4. De-Morgan’s Laws

(i) ( )A B A B∪ ′ = ′ ∩ ′
(ii) ( )A B A B∩ ′ = ′ ∪ ′

(iii) A B C A B A C− ∩ = − ∪ −( ) ( ) ( )

(iv) A B C A B A C− ∪ = − ∩ −( ) ( ) ( )

5. Associative Laws

(i) ( ) ( )A B C A B C∪ ∪ = ∪ ∪
(ii) A B C A B C∩ ∩ = ∩ ∩( ) ( )

6. Commutative Laws

(i) A B B A∪ = ∪ (ii) A B B A∩ = ∩
(iii) A B B A∆ ∆=

Important Results on Operation of Sets
1. A B A B− = ∩ ′
2. B A B A− = ∩ ′
3. A B A A B− = ⇔ ∩ = φ
4. ( )A B B A B− ∪ = ∪
5. ( )A B B− ∩ = φ
6. A B B A⊆ ⇔ ′ ⊆ ′
7. ( ) ( ) ( ) ( )A B B A A B A B− ∪ − = ∪ − ∩
8. n A B n A n B n A B( ) ( ) ( ) ( )∪ = + − ∩
9. n A B n A n B( ) ( ) ( )∪ = +

⇔ A Band are disjoint sets.

10. n A B n A n A B( ) ( ) ( )− = − ∩
11. n A B n A n B n A B( ) ( ) ( ) ( )∆ = + − ∩2

12. n A B C n A n B n C n A B( ) ( ) ( ) ( ) ( )∪ ∪ = + + − ∩
− ∩ − ∩ + ∩ ∩n B C n A C n A B C( ) ( ) ( )

13. n A B n A B n U n A B( ) ( ) ( ) ( )′ ∪ ′ = ∩ ′ = − ∩
14. n A B n A B n U n A B( ) ( ) ( ) ( )′ ∩ ′ = ∪ ′ = − ∪

Cartesian Product of Sets
Let A and B be any two non-empty sets. Then the
cartesian product A B× , is defined as set of all ordered
pairs ( , )a b such that a A∈ and b B∈ .
i.e.
l A B a b a A× = ∈{( , ) : and b B∈ }
l B A b a b B× = ∈{( , ) : and a A∈ }

and A A a b a b A× = ∈{( , ) : , }.
l A B× = φ, if either A or B is an empty set.
l If n A p( ) = and n B q( ) = , then

n A B n A n B pq( ) ( ) ( )× = ⋅ = .
l A B C A B A C× ∪ = × ∪ ×( ) ( ) ( )
l A B C A B A C× ∩ = × ∩ ×( ) ( ) ( )
l A B C A B A C× − = × − ×( ) ( ) ( )
l ( ) ( ) ( ) ( )A B C D A C B D× ∩ × = ∩ × ∩ .

Relations
l Let A and B be two non-empty sets, then relation R from A to B

is a subset of A B× , i.e. R A B⊆ × .

l If ( , )a b R∈ , then we say a is related to b by the relation R and we
write it as aRb.

l Domain of R a a b R= ∈{ :( , ) } and range of R b a b R= ∈{ : ( , ) }.

l If n A p( ) = and n B q( ) = , then the total number of relations from A

to B is 2 pq .

Types of Relations
l Let A be any non-empty set and R be a relation on A. Then,

(i) R is said to be reflexive iff ( , ) ,a a R a A∈ ∀ ∈ .

(ii) R is said to be symmetric iff

( , )a b R∈
⇒ ( , ) , ,b a R a b A∈ ∀ ∈

(iii) R is said to be a transitive iff ( , ) and ( , )a b R b c R∈ ∈
⇒ ( , ) , , ,a c R a b c A∈ ∀ ∈
i.e. aRb bRcand ⇒ aRc a b c A, , ,∀ ∈ .

l The relation I a a a AA = ∈{( , ) : } on A is  called  the identity

relation on A.

l R is said to be an equivalence relation iff

(i) it is reflexive i.e. ( , ) , .a a R a A∈ ∀ ∈
(ii) it is symmetric i.e. ( , )a b R∈ ⇒ ( , ) , ,b a R a b A∈ ∀ ∈

(iii) it is transitive

i.e. ( , ) and ( , )a b R b c R∈ ∈
⇒ ( , ) , , ,a c R a b c A∈ ∀ ∈

Inverse Relation
Let R be a relation from set A to set B, then the inverse of R, denoted
by R−1, is defined by

R b a a b R− = ∈1 {( , ) : ( , ) }. Clearly, ( , ) ( , )a b R b a R∈ ⇔ ∈ −1.

• The intersection of two equivalence relations on a set is an
equivalence relation on the set.

• The union of two equivalence relations on a set is not necessarily
an equivalence relation on the set.

• If R is an equivalence relation on a set A, then R−1 is also an
equivalence relation A.

Composition of Relations
Let R and S be two relations from set A to B and B to C respectively,

then we can define a relation SoR from A to C such that

( , )a c SoR b B∈ ⇔ ∃ ∈ such that ( , )a b R∈ and ( , )b c S∈ . This relation

is called the composition of R and S.

RoS SoR≠

NOTE
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Functions or Mapping
l If A Band are two non-empty sets, then a rule f which

associates each x A∈ , to a unique member y B∈ , is called a

function from A to B and it is denoted by f A B: → .

l The set A is called the domain of f Df( ) and set B is called

the codomain of f C f( ).

l The set consisting of all the f -images of the elements of the
domain A, called the range of f Rf( ).

• A relation will be a function, if no two distinct ordered pairs
have the same first element.

• Every function is a relation but every relation is not
necessarily a function.

• The number of functions from a finite set A into finite set
B is { ( )} ( )n B n A .

Different Types of Functions
Let f be a function from A to B, i.e. f A B: .→ Then,

f is said to be one-one function or injective function, if

different elements of A have different images in B.

Methods to Check One-One Function
Method I If f x f y( ) ( )= ⇒ x y= , then f is one-one.

Method II A function is one-one iff no line parallel to
X-axis meets the graph of function at more
than one point.

l The number of one-one function that can be defined from a

finite set A into finite set B is
n B

nP n B n A
A

( )
( )

, ( ) ( )
.

if

0, otherwise

≥



l f is said to be a many-one function, if two or more

elements of set A have the same image in B.

i.e. f A B: → is a many-one function, if it is not a one-one
function.

l f is said to be onto function or surjective function, if each

element of B has its pre-image in A.

Method to Check Onto Function
Find the range of f x( ) and show that range of

f x( ) = codomain of f x( ).

l Any polynomial function of odd degree is always onto.
l The number of onto functions that can be defined from a

finite set A containing n elements onto a finite set B

containing 2 elements = −2 2n .
l If n A n B( ) ( )≥ , then number of onto function is 0.
l If A has m elements and B has n elements, where m n< ,

then number of onto functions from A to B is
n C n C nm n m n m− − + − −1 21 2( ) ( ) ..., m n< .

l f is said to be an into function, if there exists atleast one

element in B having no pre-image in A. i.e. f A B: → is an
into function, if it is not an onto function.

l f is said to be a bijective function, if it is one-one as well as

onto.

• If f A B: → is a bijective, then A and B have the same
number of elements.

• If n A n B m( ) ( )= = , then number of bijective map from A to
B is m!.

Composition of Functions
Let f A B g B C: and :→ → are two functions. Then, the

composition of f gand , denoted by

gof : A C→ , is defined as,

gof ( ) [ ( )], .x g f x x A= ∀ ∈

• gof is defined only if f x( ) is an element of domain of g.

• Generally, gof ≠ fog.

f
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a4

b1

b2

b3

b4
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A B
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1 If Q x x
y

y N= = ∈







: ,
1

where , then

(a) 0 ∈ Q (b) 1∈ Q (c) 2∈ Q (d)
2

3
∈ Q

2 If P A( ) denotes the power set of A and A is the void set,

then what is number of elements in P P P P A{ { { ( )}}}?

(a) 0 (b) 1 (c) 4 (d) 16

3 If X n n Nn= − − ∈{ : }4 3 1 andY n n N= − ∈{ ( ): };9 1 where N

is the set of natural numbers,then X Y∪ is equal to
j JEE Mains 2014

(a) N (b) Y-X (c) X (d) Y

4 If A, B and C are three sets such that A B A C∩ = ∩ and

A B A C∪ = ∪ , then

(a) A C= (b) B C= (c) A B∩ = φ (d) A B=

5 Suppose A A A1 2 30, , ,… are thirty sets each having

5 elements and B B1 2, , ,… Bn are n sets each having

3 elements. Let ∪ = ∪
= =i

i
j

n

A
1

30

1

B Sj = and each element of S

belongs to exactly 10 of Ai ’s and exactly 9 of Bj ’ s. The

value of n is equal to j NCERT Exemplar

(a) 15 (b) 3
(c) 45 (d) None of these

6 If A Band are two sets and A B C U∪ ∪ = . Then,

{( ) ( ) ( )}A B B C C A− ∪ − ∪ − ′ is equal to

(a) A B C∪ ∪ (b) A B C∪ ∩( )
(c) A B C∩ ∩ (d) A B C∩ ∪( )

7 Let X be the universal set for sets A and B, if

n A n B( ) , ( )= =200 300 and n A B( )∩ =100, then

n A B( )′ ∩ ′ is equal to 300 provided n X( ) is equal to

(a) 600 (b) 700 (c) 800 (d) 900

8 If n A( ) =1000, n B( ) = 500, n A B( )∩ ≥ 1 and n A B P( )∪ = ,

then

(a) 500 1000≤ ≤P (b) 1001 1498≤ ≤P

(c) 1000 1498≤ ≤P (d) 1000 1499≤ ≤P

9 If n A( ) = 4, n B( ) = 3, n A B C( )× × = 24, then n C( ) is equal to

(a) 2 (b) 288 (c) 12 (d) 1

10 If R = {( , ) ,( , ), ( , ), ( , ),3 3 6 6 9 9 12 12 ( , ), ( , ),6 12 3 9 (3,12),

(3, 6)} is a relation on the set A = { , , , }3 6 9 12 .

The relation is

(a) an equivalence relation
(b) reflexive and symmetric
(c) reflexive and transitive
(d) only reflexive

11 Let R x y x y N= ∈{( , ) : , and x xy y2 24 3 0− + = }, where

N is the set of all natural numbers. Then, the relation R is
j JEE Mains 2013

(a) reflexive but neither symmetric nor transitive

(b) symmetric and transitive

(c) reflexive and symmetric
(d) reflexive and transitive

12 If g x x( ) = +1 and f g x x x{ ( )} ,= + +3 2 then f x( ) is

equal to

(a) 1 2 2+ x (b) 2 2+ x
(c) 1 + x (d) 2 + x

13 Let f x ax b( ) = + and g x cx d a c( ) , ,= + ≠ ≠0 0. Assume

a b= =1 2, , if ( ) ( ) ( ) ( )fog x gof x= for all x . What can you

say about c and d?

(a) c dand both arbitrary (b) c = 1and d is arbitrary
(c) c is arbitrary and d = 1 (d) c d= =1 1,

14 If R is relation from { , , }11 12 13 to { , , }8 10 12 defined by

y x= − 3. Then, R −1 is

(a) {( , ), ( , )}8 11 10 13 (b) {( , ), ( , )}11 18 13 10
(c) {( , ), ( , )}10 13 8 11 (d) None of these

15 Let R be a relation defined by R = {(4, 5), (1, 4), (4, 6),

(7, 6), (3, 7)}, then R OR−1 is

(a) {(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)}
(b) {(1, 1), (4, 4), (7, 7), (3, 3)}
(c) {(1, 5), (1, 6), (3, 6)}
(d) None of the above

16 Let A be a non-empty set of real numbers and f A A: →
be such that f f x x( ( )) = , ∀ ∈x R. Then, f x( ) is

(a) a bijection (b) one-one but not onto
(c) onto but not one-one (d) neither one-one nor onto

17 The function f satisfies the functional equation

3 2
59

1
10 30f x f

x

x
x( ) + +

−






 = + for all real x ≠1. The value

of f ( )7 is

(a) 8 (b) 4 (c) − 8 (d) 11

18 The number of onto mapping from the set A = { , , ... }1 2 100

to set B = { , }1 2 is

(a) 2 2100 − (b) 2100 (c) 2 299 − (d) 299

19 Let f R n: { }− → R be a function defined by f x
x m

x n
( ) ,= −

−
where m n≠ . Then,

(a) f is one-one onto (b) f is one-one into
(c) f is many-one onto (d) f is many-one into

20 A function f from the set of natural numbers to integers

defined by f n

n
n

n
n

( )
,

,
=

−

−









1

2

2

when is odd

when is even

is

(a) one-one but not onto (b) onto but not one-one
(c) both one-one and onto (d) neither one-one nor onto

FOUNDATION QUESTIONS EXERCISE

DAY PRACTICE SESSION 1
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21 Let f N N: → defined by f x x x( ) = + +2 1, x N∈ , then f is

(a) one-one onto (b) many-one onto
(c) one-one but not onto (d) None of these

22 Let R be the real line. Consider the following subsets of

the plane R R× .

S x y y x x= = + < <{( , ): }1 0 2and

and T x y x y= −{( , ): }is an integer

Which one of the following is true?

(a) T is an equivalence relation on R but S is not
(b) Neither S nor T is an equivalence relation on R

(c) Both S and T are equivalence relations on R

(d) S is an equivalence relation on R but T is not

23 Consider the following relations

R x y x y= {( , ) | and are real numbers and x wy= for some
rational number w};

S
m

n

p

q
m n p= 












, , , and q are integers such that n, q ≠ 0

and qm pn= }. Then,

(a) R is an equivalence relation but S is not an equivalence

relation

(b) neither R nor S is an equivalence relation

(c) S is an equivalence relation but R is not an equivalence

relation

(d) R and S both are equivalence relations

24 If f x
x x

x x
( )

,

,
=

+ ≥
− <





2 0

4 0
, then f f x( ( )) is given by

(a) f f x
x x

x x
( ( ))

,

,
=

+ ≥
− <





4 0

6 0
(b) f f x

x x

x x
( ( ))

,

,
=

+ ≥
<





4 0

0

(c) f f x
x x

x x
( ( ))

,

,
=

− ≥
<





4 0

0
(d) f f x

x x

x x
( ( ))

,

,
=

− ≥
+ <





4 2 0

4 2 0

25 Statement I A relation is defined by

f x
x x

x x
( )

,

,
= ≤ ≤

≤ ≤





2 0 3

2 3 9
is a function.

Statement II In a function, every member must have a
unique image.

(a) Statement I is true, Statement II is true; Statement II is a

correct explanation for Statement I

(b) Statement I is true, Statement II is true; Statement II is

not a correct explanation for Statement I

(c) Statement I is true; Statement II is false

(d) Statement I is false; Statement II is true

1 If f x f
x

x( ) + 



 =2

1
3 , x ≠ 0 and S x R f x f x= ∈ = −{ : ( ) ( )};

then S j JEE Mains 2016

(a) is an empty set
(b) contains exactly one element
(c) contains exactly two elements
(d) contains more than two elements

2 x R
x

x x x
R∈ −

+ +
∈









:
2 1

4 33 2
is equal to

(a) R − { }0 (b) R − { , , }0 1 3

(c) R − − −{ , , }0 1 3 (d) R − − −





0 1 3
1

2
, , ,

3 Given the relation R = {( , ) ( , )}1 2 2 3 on the set A = { , , }1 2 3 ,

the minimum number of ordered pairs which when

added to R make it an equivalence relation is

(a) 5 (b) 7 (c) 6 (d) 8

4 The set ( ) ( )A B C A B C∪ ∪ ∩ ∩ ′∩ ′ ′ ∩ ′ C is equal to
j NCERT Exemplar

(a) B C∩ ′ (b) A C∩
(c) B C′∩ ′ (d) None of these

5 Let A = {1, 2, 3, 4}, B = {2, 4, 6}. Then the number of sets

C such that A B C A B∩ ⊆ ⊆ ∪ is

(a) 6 (b) 9 (c) 8 (d) 10

6 On the set N of all natural numbers define the relation R

by aRb iff the g.c.d. of a and b is 2, then R is

(a) reflexive but not symmetric (b) symmetric only
(c) reflexive and transitive (d) equivalence relation

7 Suppose f is a function satisfying f x f x f x( ( )) ( )+ = 4 and

f ( )1 4= . The value of f ( )21 is

(a) 16 (b) 64 (c) 4 (d) 44

8 Let f x
x

x
x

+



 = +1 12

2
, x ≠ 0, then f x( ) is equal to

(a) x 2 (b) x 2 1−
(c) x 2 2− (d) x 2 1+

9 Let f x
x

x
( ) =

+1 2
, the fofofo of x

x

K
1 244 344

( )

times

is

(a)
x

r x
r

n

1
1

2+ 







=
Σ

(b)
x

x
r

n

1 1
1

2+ 







=
Σ

(c)
x

x

x

1 2+













(d)
nx

nx1 2+

10 If two sets A and B are having 99 elements in common,

then the number of elements common to each of the sets

A B× and B A× are

(a) 299 (b) 992 (c) 100 (d) 18

PROGRESSIVE QUESTIONS EXERCISE

DAY PRACTICE SESSION 2
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SESSION 1

1 Clearly,
1

0
y

≠ , 2 and
2

3
[Q y N∈ ]

∴ 1

y
can be 1.

⇒ x Q= ∈1

2 The number of elements in power set of
A is 1.

∴ P P A{ ( )} = =2 21

⇒ P P P A{ { ( )}} = =2 42

⇒ P P P P A{ { { ( )}}} = =2 164

3 We have,

X n n Nn= − − ∈{ : }4 3 1

X = {0, 9, 54, 243,...}

[put n = 1 2 3, , ,...]

Y n n N= − ∈{ ( ): }9 1

Y = { , , , ,...}0 9 18 27

[put n = 1 2 3, , ,...]

It is clear that X Y⊂ .

∴ X Y Y∪ =

4 Clearly, A B A C∩ = ∩ and

A B A C∪ = ∪ possible if

B C=

5 Number of elements in
A A A1 2 3∪ ∪ ∪…∪ A 30 is 30 5× but
each element is used 10 times, so

n S( ) = × =30 5

10
15 …(i)

Similarly, number of elements in

B B Bn1 2∪ ∪... is 3 n but each element

is repeated 9 times, so

n S
n

( ) = 3

9

⇒ 15
3

9
= n

[from Eq. (i)]

⇒ n = 45

6 From Venn Euler’s diagram,

It is clear that,
{( ) ( ) ( )}A B B C C A− ∪ − ∪ − ′

= ∩ ∩A B C

7 Qn A B n A n B n A B( ) ( ) ( ) ( )∪ = + − ∩
∴ n A B( )∪ = + − =200 300 100 400

∴ n A B n A B n X( ) ( ) ( )′ ∩ ′ = ∪ ′ =
− ∪n A B( )

⇒ 300 400= −n X( )

⇒ n X( ) = 700

8 We know,
n A B n A n B n A B( ) ( ) ( ) ( )∪ = + − ∩

∴ P n A B= − ∩1500 ( )

⇒ n A B P( )∩ = −1500

Clearly, 1 500≤ ∩ ≤n A B( )

[Qmaximum number of elements
common in A and B = 500]

⇒ 1 1500 500≤ − ≤P

⇒ − ≤ − ≤ −1499 1000P

⇒ 1000 1499≤ ≤P

9 We know,

n A B C n A n B n C( ) ( ) ( ) ( )× × = × ×

∴ n C( ) =
×

=24

4 3
2

10 Since for each a A a a R∈ ∈, ( , ) . R is

reflexive relation.

Now, ( , )6 12 ∈ R but ( , )12 6 ∉ R. So, it is
not a symmetric relation.

Also, ( , ), ( , )3 6 6 12 ∈ R ⇒ ( , )3 12 ∈ R

⇒ R is transitive.

11 Qa a a a a a2 2 2 24 3 4 4 0− ⋅ + = − =
∴ ( , ) ,a a R a N∈ ∀ ∈ ⇒ R is reflexive.

Now, as a ab b2 24 3 0− + =

but b ba a2 24 3 0− + ≠

∴ R is not symmetric.

Also, ( , )a b R∈ and ( , )b c R∈
/⇒ ( , )a c N∈

So, R is not transitive.

12 Given, g x x( ) = +1

and { ( )}f g x x x= + +3 2 …(i)

⇒ f x x x( )1 3 2+ = + +

Put 1 + =x y ⇒ x y= −( )1 2

∴ f y y y( ) ( ) ( )= + − + −3 2 1 1 2

= +2 2y

∴ f x x( ) = +2 2

13 Here, ( )( ) { ( )} ( )fog x f g x a cx d b= = + +
and ( ) ( ) { ( )} ( )gof x g f x c ax b d= = + +
Since, cx d cx c d+ + = + +2 2

[ , ]Q a b= =1 2

Hence, c = 1 and d is arbitrary.

14 R is a relation from { , , }11 12 13 to

{ , , }8 10 12 defined by
y x x y= − ⇒ − =3 3

∴ R = {( , ), ( , )}11 8 13 10

Hence, R −1 = {( , ), ( , )}8 11 10 13

15 Clearly, R − =1 {(5, 4), (4, 1), (6, 4), (6, 7),

(7, 3)}

Now, as (4, 5) ∈ R and ( , )5 4 1∈ −R ,

therefore (4, 4) ∈ −R OR1

Similarly, (1, 4) ∈ R and ( , )4 1 1∈ −R

⇒ (1, 1) ∈ −R OR1

(4, 6) ∈ R and ( , )6 7 1∈ −R

⇒ (4, 7) ∈ −R OR1

(7, 6) ∈ R and ( , )6 7 1∈ −R

⇒ (7, 7) ∈ −R OR1

(7, 6) ∈ R and ( , )6 4 1∈ −R
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⇒ (7, 4) ∈ −R OR1

and (3, 7) ∈ R and ( , )7 3 1∈ −R

⇒ (3, 3) ∈ −R OR1

Hence, R OR− =1 {(1, 1), (4, 4), (4, 7),

(7, 7), (7, 4), (3, 3)}

16 Let x y A, ∈ such that f x f y( ) ( )= , then

f f x f f y( ( )) ( ( ))=
⇒ x y=
⇒ f is one-one.

Also,for any a A∈ , we have

f f a a( ( )) =
⇒ f b a( ) = , where b f a A= ∈( )

Thus, for each a A∈ (codomain) there
exists b f a A= ∈( ) such that f b a( ) =
∴ f is onto.

Hence f is a bijective function.

17 We have, 3 2
59

1
f x f

x

x
( ) + +

−








= +10 30x … (i)

On replacing x by
x

x

+
−

59

1
, we get

3
59

1
2f

x

x
f x

+
−







 + ( )

= +
−

40 560

1

x

x
…(ii)

On solving Eqs. (i) and (ii), we get

f x
x x

x
( ) = − −

−
6 4 242

1

2

∴ f ( )7
6 49 4 7 242

6
4= × − × − =

18 We know that if n A n( ) = and n B( ) = 2,

the number of onto relations from A to

B = −2 2n

∴ Required number of relations

= −2 2100

19 Suppose for any x y R, ∈ ,

f x f y( ) ( )=
⇒ x m

x n

y m

y n

−
−

= −
−

⇒ x y=
So, f is one-one.
Let α ∈ R be such that f x( ) = α

∴ x m

x n

−
−

= α ⇒ x
m n= −

−
α

α1

Clearly, x R∉ for α = 1

So, f is not onto.

20 Let x y N, ∈ and both be even.

Then, f x( )= f y( ) ⇒ − x

2
= − y

2
⇒ x = y

Again, x y N, ∈ and both are odd.

Then, f x( )= f y( ) ⇒ x = y

So, f is one-one

Since, each negative integer is an image
of even natural number and positive

integer is an image of odd natural
number. So, f is onto.

21 Let x y N, ∈ such that f x f y( ) ( )=

⇒ x x y y2 21 1+ + = + +

⇒ ( )x y y x2 2− = −
⇒ ( ) ( )x y x y− + + =1 0

⇒ x y= or x y N= − − ∉1

⇒ x y=
⇒ f is one-one.

But f is not onto, as 1∈ N does not have
any pre-image.

∴ f is one-one but not onto.

22 Since, (1, 2) ∈ S but (2, 1) ∉ S

Thus S is not symmetric.
Hence, S is not an equivalence relation.

Given, T x y x y I= − ∈{( , ) : ( ) }

Now, x x I− = ∈0 , it is reflexive

relation.

Again, now ( )x y I− ∈
⇒ y x I− ∈ , it is symmetric relation.

Let x y I− = 1

and y z I− = 2

Then, x z− = ( ) ( )x y y z− + −
= + ∈I I I1 2

So, T is also transitive. Hence, T is an

equivalence relation.

23 Since, the relation R is defined as
R x y x y= {( , )| , are real numbers and
x wy= for some rational number w}.

(a) Reflexive xRx x xas = 1

Here, w = ∈1 Rational number

So, the relation R is reflexive.

(b) Symmetric xRy yRx/⇒ as 0 1R but

1 0/R
So, the relation R is not

symmetric.

Thus, R is not equivalence

relation.

Now, for the relation S, defined as,

S
m

n

p

q
m n p q=







 ∈





, , , and integers

such that n q, ≠ 0 and qm pn= }

(a) Reflexive
m

n
S

m

n
mn mn⇒ =

[true]
Hence, the relation S is reflexive.

(b) Symmetric
m

n
S

p

q
mq np⇒ =

⇒ np mq
p

q
S

m

n
= ⇒

Hence, the relation S is

symmetric.

(c) Transitive
m

n
S

p

q
and

p

q
S

r

s

⇒ mq np= and ps rq=

⇒ mq ps np rq⋅ = ⋅ ⇒ ms nr=

⇒ m

n

r

s
=

⇒ m

n
S

r

s

So, the relation S is transitive.

Hence, the relation S is

equivalence relation.

24 Clearly,

f f x
f x f x

f x f x
( ( ))

( ), ( )

( ), ( )
=

+ ≥
− <





2 0

4 0

=
+ + ≥
+ − <





2 2 0

2 4 0

( ),

( ),

x x

x x

=
+ ≥
− <





4 0

6 0

x x

x x

,

,

25 Statement I f x
x x

x x
( )

,

,
= ≤ ≤

≤ ≤




2 0 3

2 3 9

Now, f ( )3 9=
Also, f ( )3 2 3 6= × =
Here, we see that for one value of x,
there are two different values of f x( ).

Hence, it is not a function but
Statement II is true.

SESSION 2

1 We have, f x f
x

x( ) + 





=2
1

3 ,

x ≠ 0 … (i)

∴ f
x

f x
x

1
2

3





+ =( ) … (ii)




replacing x by

1

x




On multiplying Eq. (ii) by 2 and then
subtracting it from Eq. (i), we get

− = −3 3
6

f x x
x

( )

⇒ f x
x

x( ) = −2

Now, consider f x f x( ) ( )= −

⇒ 2 2

x
x

x
x− = − + ⇒ 4

2
x

x=

⇒ x2 2= ⇒ x = ± 2

Thus, x contains exactly two elements.

2 Clearly,
2 1

4 33 2

x

x x x
R

−
+ +

∈ only when

x x x3 24 3 0+ + ≠

Consider x x x3 24 3 0+ + =

⇒ x x x( )2 4 3 0+ + =
⇒ x x x( ) ( )+ + =1 3 0

⇒ x = − −0 1 3, ,

∴ x R
x

x x x
R∈ −

+ +
∈








:
2 1

4 33 2

= − − −R { , , }0 1 3
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3. For R to be an equivalence relation, R
must be reflexive, symmetric and
transitive.

R will be reflexive if it contains (1, 1),
(2, 2) and (3, 3)

R will be symmetric if it contains
(2, 1) and (3, 2)

R will be transitive if it contains (1, 3)
and (3, 1)

Hence, minimum number of ordered
pairs = 7

4 ( ) ( )A B C A B C C∪ ∪ ∩ ∩ ′∩ ′ ′∩ ′
= ∪ ∪( )A B C ∩ ′∪ ∪ ∩ ′( )A B C C
= ∪ ∪ ∩ ′( )φ B C C

= ∪ ∩ ′( )B C C

= ∩ ′ ∪ = ∩ ′( )B C B Cφ

5 Here, A B∩ = { , }2 4

and A B∪ = {1, 2, 3, 4, 6}

Q A B C A B∩ ⊆ ⊆ ∪
∴ C can be {2, 4}, {1, 2, 4}, {3, 2, 4},

{6, 2, 4}, {1, 6, 2, 4}, {6, 3, 2, 4},
{1, 3, 2, 4}, {1, 2, 3, 4, 6}

Thus, number of set C which satisfy the
given condition is 8.

6 Clearly, g.c.d ( , )a a a= , ∀ ∈a N

∴ R is not reflexive.

If g.c.d ( , )a b = 2, then g.c.d ( , )b a is
also 2.

Thus, aRb ⇒ bRa

Hence, R is symmetric.

According to given option, R is
symmetric only.

7 We have,

f x f x f x( ( )) ( )+ = 4 and f ( )1 4=
On putting x = 1, we get

f f f( ( )) ( )1 1 4 1+ =

⇒ f f( ( ))1 1 16+ =

⇒ f ( )1 4 16+ =

⇒ f ( )5 16=
On putting, x = 5, we get

f f f( ( )) ( )5 5 4 5+ =

⇒ f ( )5 16 4 16+ = ×

⇒ f ( )21 64=

8 We have,

f x
x

x
x

+





= +1 12

2

= +





−x
x

1
2

2

⇒ f x x( ) = −2 2

9 We have, f x
x

x
( ) =

+1 2

⇒ f f x
f x

f x
( ( ))

( )

( ( ))
=

+1 2

=
+

+
+

x

x

x

x

1

1
1

2

2

2

=
+

x

x1 2 2

Similarly, f f f x
x

x
( ( ( ))) =

+1 3 2

M M

fofo of of x
x

nx
n

K
1 244 344

( )

times

=
+1 2

=

+ 







=

x

x
r

n

1 1
1

2Σ

10 We know,

( ) ( ) ( )A B C D A C× ∩ × = ∩
× ∩( )B D

∴ ( ) ( ) ( )A B B A A B× ∩ × = ∩
× ∩( )B A

Thus, number of elements common to
A B× and B A×

= × ∩ ×n A B B A(( ) ( ))

= ∩ × ∩n A B B A(( ) ( ))

= ∩ × ∩n A B n B A( ) ( )

= ×99 99 = 992
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